Description Qty Item Price  
your basket is empty

sub total£0.00  
£ $
proceed to checkout

Introduction to Dynamics using FEA

January 29th - March 19th, 2018
07:00 PST / 10:00 EST / 15:00 GMT / 16:00 CET
Six Session Online Training Course - 2 hours per session -
one session per week


  • Do you know if your model is realistic?

  • What is the importance of normal modes analysis?

  • How do you calculate transient and frequency response input parameters effectively?

Get the answers to these questions and more with this industry-leading, code-independent e-learning course.

This 6-session, live online course will cover a range of topics, all aimed at structural designers and engineers who are moving into the area of dynamic analysis, including:

  • Normal Modes Analysis
  • Damping
  • Modal Coordinates
  • Modal effective Mass
  • Transient Response
  • Frequency Response

You can either attend the live sessions or
take the course on-demand at your leisure. 

NAFEMS e-learning gives you the best of both worlds, giving you real, practical knowledge that you can use day-to-day to improve your analyses.

What will you learn?

  • The importance of normal modes analysis
  • Techniques for identifying and characterising normal modes
  • Roadmaps for simple and effective calculation of transient and frequency response input parameters
  • A QA checklist covering normal modes and dynamic response analysis
  • Practical hints and tips on all aspects of normal modes and dynamic response analysis

What questions will this course answer?

  • What are the most important dynamic analysis topics?
  • What theoretical background do I need to understand the implications of my analysis?
  • What practical hints and tips do I need to be able to carry out analysis effectively?

Who should attend?

Designers and engineers who are moving into the area of dynamic analysis. Familiarity with FEA is assumed, but no other background knowledge is required.

The objective of this course is to break down any Dynamics problem into clearly defined steps and show how to successfully implement practical solutions using Finite Element Analysis.

Dynamic analysis needs a clear set of objectives and analysis plan to:

  • Predict what natural frequencies will be important
  • Avoid guessing the size or number of time steps in a transient analysis
  • Adopt an accurate and logical method to define frequency response calculation points
  • Make informed decisions on damping
  • Make an engineering assessment – is your model realistic
  • Check the answers – guilty until proven innocent!

This class covers all the FEA solution types required to carry out normal modes and basic frequency response analysis. 

The course is completely code independent.

  • A full set of notes in PDF format will be available for download. Each session is presented live and is available for review via a streamable recording.

  • Personal passwords are provided to allow you to access e-learning backup material via our special bulletin board. Reading lists, homework submissions, supplementary data are all stored as files on the bulletin board.

  • Interaction via the bulletin board is strongly encouraged to obtain the most from the e-learning class. Typically the board runs for 4 weeks after the last live class sessions, giving you plenty of time to catch up with homework, review and ask questions.

Note: homework is purely voluntary!

Course Process and Details 

Students will join the audio portion of the meetings by utilizing the VoIP (i.e. headset connected to the computer via headphone and microphone jacks) or by calling into a standard toll line. If you are interested in additional pricing to call-in using a toll-free line, please send an email to: e-learning @ .

Course Program

Note: This is a six-week course. Each session represents one 2-hour session per week.

Session 1 - Background to Dynamics

  • Introductions
  • FEA Overview
  • What are Natural Frequencies, Normal Modes
  • Equation of Motion
  • Undamped Free Vibration
  • Undamped Single Degree of Freedom Systems
  • Undamped Multiple Degrees of Freedom
  • Eigenvector normalization
  • Importance of Mode Identification – use of post-processing
  • Checklist for Normal Modes assessment
  • Homework session 1

Session 2 - Dynamics in FEA

  • Homework Review
  • Eigenvalue Extraction Methods
  • Rigid Body Modes
  • Importance of Mass modeling
  • Accurate Idealization – joints and boundary conditions
  • Meshing quality
  • Typical Errors
  • QA for normal modes analysis
  • Homework session 2

Session 3 - Dynamic Analysis Building Blocks

  • Homework Review
  • Modal Coordinates
  • Introduction to Modal Effective Mass
  • Introduction to Damping
  • Damped, Free vibration
  • Forms of Damping
  • Practical Damping
  • Workshops
  • Homework session 3

Session 4 - Overview of Response Analysis

  • Homework Review
  • Modal and Direct methods
  • Residual Vectors
  • Introduction to Forcing Functions and Damping
  • Damped, Forced vibration
  • Workshops
  • Homework session 4

Session 5 - Transient Analysis

  • Homework Review
  • Transient Analysis background
  • Direct Transient Analysis
  • Direct Transient Examples
  • Accurate time step prediction, results checking, aliasing
  • Modal Transient Analysis
  • Modal Transient Examples
  • Dynamic Base Motion
  • Base Motion Examples
  • Homework session 5

Session 6 - Frequency Response Analysis

  • Homework Review
  • Frequency Response Analysis background
  • Direct Frequency Response
  • Strategy for Frequency Response calculation points
  • Example with Direct Frequency Response Analysis
  • Modal Frequency Response
  • Example with Modal Frequency Response Analysis
  • Checking - importance of peaks and spectral spread
  • Homework session 6

Special Note(s):

Telephony surcharges may apply for attendees who are located outside of North America, South America and Europe. These surcharges are related to individuals who join the audio portion of the web-meeting by calling in to the provided toll/toll-free teleconferencing lines. We have made a VoIP option available so anyone attending the class can join using a headset (headphones) connected to the computer. There is no associated surcharge to utilize the VoIP option, and is actually encouraged to ensure NAFEMS is able to keep the e-Learning course fees as low as possible. Please send an email to the e-Learning coordinator (e-learning @ ) to determine if these surcharges may apply to your specific case. 

Just as with a live face-to-face training course, each registration only covers one person. If you plan to register a large group (10+), please send an email to e-learning @ in advance for group discounts.

For NAFEMS cancellation and transfer policy, click here

Purchasing Details

Members Price
£279 | $346 | €319

Non-Members Price
£418 | $518 | €477
Order Ref: el-223
Event Type: Course
Location: e-Learning Online
Date: January 29, 2018

Course Tutor:

Read Tony's bio on the NAFEMS Tutors Page

Not Available to Attend this Time? 

Would you like us to notify you when the next run of this course is open for enrollment? If so, add yourself to the eLearning Waitlist!

Session 1:
Monday, January 29th

Session 2:
Monday, February 5th

Session 3:
Monday, February 12th

Session 4:
Monday, February 19th

Session 5:
Monday, March 12th

Session 6:
Monday, March 19th

NoteOnce you register for the course using the "order" button (look up), you will receive your invoice, and the day before the course starts, an email invite to the class discussion board. Please note that no 'physical' goods will be mailed to you.

Please click here to view the FAQ section, or if you need to contact NAFEMS about this course.

Engineering Board PDH Credits

*It is your individual responsibility to check whether these e-learning courses satisfy the criteria set-out by your state engineering board. NAFEMS does not guarantee that your individual board will accept these courses for PDH credit, but we believe that the courses comply with regulations in most US states (except Florida, North Carolina, Louisiana, and New York, where providors are required to be pre-approved).